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1. Introduction

Financial practice is based on statistical dataijtalization,
information technologies, data analytics, and foianand economic
theories. Globalization, computers on steroidsa dmanularity and the
rising complexity of financial systems in transiti@are challenging
further the practice of finance. The intent of ttagt is two-fold: on the
one hand, to introduce elements of fractional dakuapplied to
statistical distributions, and, on the other, tofirde a fractional
randomness. Scaling defines a time measure wigieceéso which data
are recorded, on the basis of which statisticalyaea are made. For
example, a model based on day data, defining & ghoce from day-
to-day, differs from one defined in an intraday,ellg or any other
time frame. As a result, statistical implicatiom®rh models’ data
depend on the time scale. For example, intradag (faeasured by
milliseconds, minutes and hours) exhibit a randsartbat differs due
to data’s granularity. By the same token, tradiimgtsgies are exchange
mechanisms that account for the time granularithewtime scales
change, prices change. In such contexts, high-freguand day-data
trading differ fundamentally due to their time s=al

Consider the speed at which a train travels. A tiash (say the
TGV in France) recording images as it travels ghlspeeds has little
granular detail relative to a “slower” train. Yéey both observe the
same landscape, each providing a granular snafgsaci. sample time
and its granularity, seeking to reconcile theosti@ssumptions that
sampled data and the information it implies provielactional calculus
is then a means to reconcile models’ granulardifined by fractional
operators and their “fractional index”. For exampfeactional and
statistical operators are applied to probabilitystrdtbutions and
stochastic processes that provide alternative itiefis of “fractional
randomness”.



2. Originsof fractional calculus

The origins of fractional calculus, its applicaorand its
extensions to stochastic systems are not new. @adich example,
provided an expression for the remainder of a Tragkries integer
residual, accounting for terms neglected by Tayleeries’
approximations. Leibniz (1695) extended Cauchy'mamader to a
fractional remainder, thereby expanding the scopmkthe meaning of
this remainder and providing an initial foundatidar fractional
calculus. The product rule:

k(k — 1)
+ 2!

led Leibniz to consider a fractional developmemtilar to that of a
binomial expansion given below.

k
d*(xy) = d*xd% + de‘lxdly d*=2xd?y + ---

K g k(k=1) j—
(x + y)* =xky°+axk 1y+—(2! ) yk 2y2 4+ ..

with (x%,y%) = (1,1).
This leads further to the fractional binomial exgian,

byt =t (142) =xﬂ<1+%(§)+$(§)z +)

Hx"=1 H(H-1)
+ X
1! 2!
Although Leibniz did not develop a fractional cdiey he raised
modelling and computational issues for mathematgcia reckon with.
A summarized historical review includes, but is eatlusive to the
following list:

= xH + H-2y2 4 ...

! See Hilfer (1995) (2000) for a review.
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e Cauchy defined theTaylor series remainder;
* Leibniz (1695) investigated fractional derivatives;
» Euler (1738) introduced the gamma function anthiisgral;

* Fourier (1822) provided a trigonometric definitiaxf a
fractional derivative;

* Liouville (1832) defined fractional operators;

* Riemann provided a definition similar to that ofouville
that differs by limits of integration;

e Grunwald (1867) and Letnikov (1868) provided a atifnce
approximation to the fractional derivative;

* Following Hadamard, Marchaud developed fractional
differential equations (1927);

* Hurst published his empirical rescaled range medtomy
(Hurst index, defined using Nile data) (1951);

» Caputo (1967) provided a definition of fractionatdagrals
(pointed out by Liouville);

» Mandelbrot and colleagues (1963), (1967), (1968) Rama
(1963) developed fractional Brownian motion.

Since then, fractional Poisson (Laskin, 2003), uimet al
(2000), fractional Brownian Motion (Mandelbrot dt §1963, 1967,
1968), fractional probability distributions and ti&tical fractional
randomness defined by a Fractional Brownian Briflgi¢h fractional
index 1/2<H <1(with fractional index 0O<H <1/2 ) have been
introduced by Tapiero and Vallois (2016) (2017) 128) (2018b).
There is, in addition, a long series of applicaiband developments
by Potlubny (1999), Caputo (1967), Metzler and tdaf(2004),

2 Additional reviews and references include Hilfed ) (2000) and
Duncan, Hu and Pasik-Duncan (2000). See also, Bt Hult (2005),
Cheridito (2001), Dacorogna et al. (1993), Mull&®92), Muller et al. (1990)
(1993), and Dung (2008).



Additional references to fractional calculus abquimtcluding, for
example, contributions by Baleanu et al. (2010néida, Pooseh and
Torres (2015), and many others, broadly availabladademic papers
and books. Other discrete, continuous deterministis well as
stochastic diffusion systems are defined by eitligerential equations,
Fokker—Plank equations or other partial differdreiguations.

There are numerous applications to fractional ¢afcand their
fractional operators altering the traditional rulek the differential
calculus. They introduce both an opportunity toangthese rules and,
at the same time, challenge their interpretatiord (Bous usefulness).
For example, an application of Liouville operatdcs conventional
probability distributions need not necessarily le@d conventional
probability distributions. However, a fractionalZaad rate as well as
Brownian Motion imply complete probability distribons (Tapiero
and Vallois, 2017). Extensions and applicationsuoh developments
have been made by numerous authors, as stated.above

3. Fractional Operators

Fractional calculus is based on integral operatfrsand DE.
Considering the fractional derivative< H < 1 anda = 0, they are
defined by the Riemann—Liouville functions:

% See, for example, Laskin (2003), Orsingher anitd(2012), Miller and
Ross (1993), Taqqu (1986) (2003), and Jumarie @0E®05b) (2006a)
(2006b) (2009) (2010) (2013).

“ See Hurst (1951) for a fractional index based (#Rrge samples analysis;
see also Imhoff (1985), Tapiero and Vallois (199&97), Vallois and
Tapiero (1996), (2000), (2008). For ARFIMA regress and other
econometric models, see Baillie (1996), Baum ef18199), Beran (1992),
Engle (1987), Engle, Ité and Lin (1990) and Bollevg1986). For
applications applied to long-run dependence inksprices, see Granger and
Joyeux (1980) and Green and Felitz (1977).
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1

la® =15

ft(t - f(Ddr,t > a

where f: [a, co[= R is a function such thayf;lf(r)l dt < oo for any
t = a. With the fractional derivative fgf given by:

DH(f)=DIL™Hf for 0 <H <1 where D is the usual derivative.
Whena = 0, we write I = [ = [ and DY = D{f = D", in which
case,

DHIH(F) = f. IHDH(f). 0<H<I.
Further note that @ = 1,11 (f)(¢t) = fotf (t)dr andD?! =

Consider, for example, the functigrp (t):

goﬁ(x)—mxﬁ Lx>0,8>0.
Then,
1 t
Mog(t) = oo | (=D P14z,
F(H)F(/?)OJ
We setr = ut
u H+B 1 Ho1y, _1d tI-I+B—1
Pos® = ranr) J (1 -2 =T Pern
Therefore,

DHgp =DI'" Mg = Dppr1-n = Qp-p -

When f is a probability distribution, its fractional digtution may or
may not exist (as we shall prove). We define a tidaal Cumulative
Density Function (FCDF) and a Fractional Probabildistribution
(FPD) as follows:



Definition 1. Let0 < H < 1.

Let f(t) be a non-negative function afdt) a non-decreasing function
such tha# (o) = 0. The FCDF and the FPD associated vfith) are:

Fu(®) = I (F)(©) = f (t = DF f(D)drt 2 0

I'(H)

and

fu(®) = DE(F)() = *HF(t) = j (t = O)H F(D)dr t

= 0.

The proof forfy (t) above follows from the following elementary
fractional operators:

fH — DHF — D111—H11f — Dl]l]l—Hf — Il_Hf.

Note that, an FPD is defined as the fractionalva¢ine of its
Cumulative Distribution Function (CDF) while the BE is defined by
the fractional integration of the probability dibtition. These
distributions, defined by their fractional operatormay then be

calculated numerically by the computational apphoased for a
fractional derivative and its integration. Intugly, we define as well:

dF,

¢
dt_: = DHF(t) = fy(t) and Fy = ff(t)(dt)H
0

where time intervals of ordétit) emphasize a difference to standard
integral calculus. ThusH corresponds to a reference and standard
definition of an integral, wherH > 1 corresponds to an integral based
on a “more refined” estimate of its CDF. InversebhenH < 1, the
time intervals tend to be larger, and thereby, fitsctional FCDF
coarser. For example, consider the exponentialgtitity distribution
with0 < H < 1,F(t) =1 —e ¥, then:
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(—ut)¥

F(t) =- o
k=1
SinceD! (t%) = %t“‘”, the fractional derivative df is
k
- rk+1
DHE(t) = — (—uw) ( ) fkH

! —
£ k! T(k+1-H)

_ _( (—ut)* )t_H_
& ['(k+1—-H)

3 (—ut)* _
fu(®) = —<k>1—r(k 1 —H))t H

And therefore:

and atH = 1,

(—ut)k S (Cuk
fi(®) =— <k:1 k= 1)!> Z e Mt

In other wordsF is an exponential CDF, and its derivative is irtlan
exponential distribution. The fractional exponentigrobability
distribution defined by fy(t) is not, however, a conventional
distribution. Indeed, sincg, = I'"H (e™#), it is easy to deduce that its
integral ovel[0, o[ is infinite. Note that:

fu@®) = W' HE 5y (—put)
whereE, (x) is the Mittag—Leffler function given by:

xn
s )= )\ a4 By

This raises a number of issues pertaining to thanimg of fractional
probability distributions as alluded to previoudRecently, however, in
a work-in-process by Simon, Boudabsa and Valloiscamplete
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fractional exponential distribution was devised. do so, one may
consider instead the fractional differential equati DPF =
u(1—F) 0 < H <1 and demonstrate that:

()"

PO = 2, 0@+

=Enq (—HxH)-

4. Example: Fractional Discrete Probability
Distribution

Let X be a discrete random variable with its CDF givgn b
0 if x<a

i

Eak if a;<x<ajq
Fx) =4 1=

n

Zak=1 if x=ay

=1

Its fractional probability distribution defined ansummed in the
intervala; < x < a;;4,i = 1,2,...,n,is thus:

1 . (047 .
fH(x) = F(l _ H) kZl (x _ ak)H Iai S X S ai+1'l = 1,2,3, e, N

The proof is as follows. In the intervale (0,a,], F(x) = 0, and,
thereforefy (x) = 0. In the intervak € [a,, a,), we note that:

a;(x —ay)t™H

I S SR
It HF(x)—mf(x—r) Ho dr = ra_m)

a; < x < a.

Then,



a;(x—ay)™"

d - j—
fu) = "0 = T

Repeating these calculations over each intesval[a;, a;,1),i <n —
1, we obtain:

I“"HE(x) = 1 2 il and recover F; = F when
rai—H) ~ (x—a)H

H=1.

The implications of a fractional discrete distrioat are then: at each
point a;, the fractional probability; has a singularity and a fat tail
since:

1

fH(x)~F(1 — H)X_H,x - 0.

5. Fractional Distributions and Randomness

In practice, fitting data (that is, the real worltjpy modify the
tools usually used in statistical modelling. Fostance, the standard
Brownian Motion can be replaced by a Lévy processthat new
random variables have the “heavy tail distributigmbperty,P (X >
x)~x%, wherex — oo, for somea > 0. In the same spirit, it could work
with a fractional Brownian Motion with a Hurst ind& € [0,1]. In the
following, we seek to introduce statistical fraci@ randomness and
their associated probability distributions definegt the fractional
Brownian Bridge forl/2<H <1 anda=1/(1-H),0<H <1/2
for stable distributions. Although there is a humgely of literature on
this topic, our intent here is limited to a statiat approach to fractional
randomness.

Definition 1: Deterministic linear granularity
A granular system is a tripl€0, X, (¢;)+¢;), such that:

e 0 is afixed point on the real line;
9



e X isthe root, the origin of the granular structure;

« the size of the grain at levels g; and induces a segmentation
of the whole line via the collection of poirts + ke;, k € Z};

* ti>¢& is right-continuous decreasing (i.€.< &; < & for
anys < t) andgy = 0.

We say that this system is coherent if:
Etrs = & T &,t,5 = 0. (5.1)

The coherence property implies that the segmentatith rootX and
granularitye,, ¢ is included in the thinner granular system witly eaot
of the typeX + ke, and size of graia,. Mathematically:

(X +k(e +6),k €T} {X+ ke, + k'e, k' k € 7).

WhenI = [0,1], it is easy to deduce from 5.1 that= ct, for all t >
0, wherec > 0 is a constant. We can give two examples. A mi@psc
that has a finite number of possible zoofeg);<x<n, OF markets,
which are observed at different times: weekly, ydathourly, per
minute....

Definition 2: Stochastic Granularity

A stochastic granular system is a granular entity
(0,X, (e1)refo]) like above, such thaty is a random variable and
(et)tefo,1] @ collection of random variables, that is, a séstic process
that is independent froii and:

Etys = &t + é\S’ Vt,S > O (52)

where &, is a random variable independent f and has the same
distribution as;.

Let (g)¢»0 be a Lévy process, such tlagt= 0, independent and
stationary increments. Then, the random variablg, —¢; is
independent of, and is distributed as, and therefore (5.2) holds. The
standard Brownian MotiofB;);s( iS a Lévy process, but is not valued

10



in [0, +0 ]. Nevertheless, any non-increasing Lévy process (@lled
a subordinator) is convenient, and in particulae, gtable ones.

6. Towardsfractional integration

We begin with few preliminaries. Lef be a non-negative
random variable with a Probability Density Functi&DF) f: [0, oo[—
[0, +00o[ such that:

OJ f(®dt = 1.

LetY; andY, be two independent random variables with BFpandf,,
respectively, with the PDF af + Y,:

f) =fixfo(x) = Jfl(t)fz(x — t)dt,x > 0.
0

Returning to our granular syste(rﬂ,X, (St)te[o,ﬂ) where(&;:)¢so IS @
subordinator, and assuming tlaathas a density functiofi at any time
t > 0, then:

fe* fs = frast,s > 0. (5.3

Recalling thalX ande, are independent and thiats the PDF o, then
the PDF ofX + & is:

M) = f 5 fu) = f FfiG—wdu, x> 0.
0

We have already introduced the functignin Section 3:

1 t—1
(pt(x) = F(t)x 1X>OI t> 0-

Then the family(p;):>o iS @ semi-group, that is, it satisfies a property
of the type (5.3):

11



Pt * Ps = Ptys.
@, however, is not a PDF since:
f @¢(x)dx = +oo.
0

This leads us to define for any < H <1 the granular fractional
densityFy as:

Fu = f* Queo = 1"f(0) = g5 Jy FO@ =D dt, x>0 (5.4)

where the Riemann-Liouville operattt has been defined (Liouville,
1832). Fy is formally the density ok + ¢ wheree; is a pseudo-
random variable with “densityp. The family(g/);s, Satisfies some
independence property of type (5.3).

It is convenient to introduce a (classical) nonateg@ random
variable Xy with density functionf. Note thatF; coincides with the
Cumulative Distribution Function (CDF) df;. Using the rules of the
fractional integral and derivatives operator, we ge

Fy =I"f = [HDI'f = [HDF, = [ADHD1"HF, = p1-HF,.

The relation Fy; = D'"HF, implies that F; is a fractional
probability distribution with ordeft — H (Tapiero and Vallois, 2016).
SinceFy = 17 f, we can also interpret; as the fractional CDF, (cf.
also the Definition in Section 3). Recall, as pethbut previouslyFy
is not a conventional CDF. It is clear that (5dplies thatF,; admits
the following stochastic representation:

Fiy(%) = 757 ((c=%)77") x=0 (5.5)

where (x —Xf)I:_1 equals(x — X;)" " if X; <x and O otherwise.

Furthermore, it is easy to check that the randoriabke (x — Xf)lz_1
is integrable. We can deduce from (5.5) a firstrapipnation of Fy (x).

12



Namely, letX?,....,X"™ be a sample okr. Then, for anyt > 0, the
strong law of Iarge numbers directly implies:

F(H) ((t = XDH e (£ — X™MHY)

converges a.s. t,(t), asn — oo.

If H=1, we recover the classical strong law of large nemisince
(x —X")IZ_1 = 1(yio,). Furthermore, assume that>1/2. Under

some additional assumptions, we can prove tharahdom variable
(x — X)%~1 is square integrable. This implies that we canlyagipe
classical central limit theorem. For amy> 0, the sequence of random
variables

<F(H) (x X) —nFH(x)> (5.6)

converge in distribution as — c to a Gaussian random variabig.
We can determine the covariance of the random ifum¢t\,.),-o (see
Tapiero and Vallois (2018a) on the fractional BraamnBridge). We
may also prove a representation (df,),so in terms of a stochastic
integral with respect to the Brownian Bridd®B(t),0 <t < 1),
which, for simplicity, we refer the reader to ouaper (2018a). If,
however,f := 1j, 1] (i.€. X; is uniform in[0,1]), then for anyx, A, is
distributed asBB"(x), where (BB (t),0 <t < 1) is the fractional
Brownian Bridge:

BBY(t) = %I(t —w)!"1dBB(u), 0<t<1.
0

Finally, when 0<H <1/2, we have to change the
normalization in (5.6), and the limit is a stabédom variable with
parametera := 1/(1 — H) €]1,2[. Such a result can be found in
Tapiero and Vallois (2018b).
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7. Conclusion

Financial Data analysed by parametric mathematiaad
stochastic models are constructed and used togprfedlire events and
financial prices as well as to invest and managksriThese models,
however, are hypotheses, which are justified byirthmirported
rationality and statistical estimates. The staisdti treatment and
analysis of the sampled data alter the traditi@mgroach to financial
complete market pricing models. It consists ofdékpectation of future
prices and an appropriate filtration and conditiomaartingale
providing a unique price. These differences are ezidbd in their
applications to discrete and “fractional time” daefd by their calculus.
For example, given a continuous-time stochasticgss, discretized:

dx, = f(t,x)dt + a(t, x;)dW (t)
and
Xepar — X¢ = [ (& x)At + (8, x0) Wegne — We)

wheredt is small and/ (t) defines a Brownian Motion. Higher order
approximations off (t,x;) and o(t,x;) may be used further using
Milshtein approximations.

Our conclusion to this text is that randomnesdsde altered by
its fractional application due to its fractionam8. ThisPrisme has
thereby shown that depending on the fractional xndeactional
randomness based on the statistical approach ¢tiofnal calculus, as
shown for a fractional index/2 < H < 1, results in a Brownian
Bridge, while for0 < H < 1/2, an alpha stable distribution results.
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