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1. Introduction 
Financial practice is based on statistical data, digitalization, 

information technologies, data analytics, and financial and economic 
theories. Globalization, computers on steroids, data granularity and the 
rising complexity of financial systems in transition are challenging 
further the practice of finance. The intent of this text is two-fold: on the 
one hand, to introduce elements of fractional calculus applied to 
statistical distributions, and, on the other, to define a fractional 
randomness. Scaling defines a time measure with respect to which data 
are recorded, on the basis of which statistical analyses are made. For 
example, a model based on day data, defining a stock price from day-
to-day, differs from one defined in an intraday, weekly or any other 
time frame. As a result, statistical implications from models’ data 
depend on the time scale. For example, intraday data (measured by 
milliseconds, minutes and hours) exhibit a randomness that differs due 
to data’s granularity. By the same token, trading strategies are exchange 
mechanisms that account for the time granularity. When time scales 
change, prices change. In such contexts, high-frequency and day-data 
trading differ fundamentally due to their time scales. 

Consider the speed at which a train travels. A fast train (say the 
TGV in France) recording images as it travels at high speeds has little 
granular detail relative to a “slower” train. Yet, they both observe the 
same landscape, each providing a granular snapshot. Each sample time 
and its granularity, seeking to reconcile theoretical assumptions that 
sampled data and the information it implies provide. Fractional calculus 
is then a means to reconcile models’ granularities defined by fractional 
operators and their “fractional index”. For example, fractional and 
statistical operators are applied to probability distributions and 
stochastic processes that provide alternative definitions of “fractional 
randomness”.  
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2. Origins of fractional calculus 

The origins of fractional calculus, its applications and its 
extensions to stochastic systems are not new. Cauchy, for example, 
provided an expression for the remainder of a Taylor series integer 
residual, accounting for terms neglected by Taylor series’ 
approximations. Leibniz (1695) extended Cauchy’s remainder to a 
fractional remainder, thereby expanding the scope and the meaning of 
this remainder and providing an initial foundation for fractional 
calculus. The product rule: 

������ = ������ + 
1! ��
����� + 
�
 − 1�2! ��
����� + ⋯ 

led Leibniz to consider a fractional development, similar to that of a 
binomial expansion given below.1 

�� + ��� = ���� + ��! ��
�� + ���
���! ��
��� + … 

with ���, ��� = �1,1�. 
 

This leads further to the fractional binomial expansion, 

�� + �� = �� �1 + ���� = �� �1 + �1! ���� + ��� − 1�2! ����� + ⋯ � 

= �� + ���
�1! + ��� − 1�2! ��
��� + ⋯ 

Although Leibniz did not develop a fractional calculus, he raised 
modelling and computational issues for mathematicians to reckon with. 
A summarized historical review includes, but is not exclusive to the 
following list: 

  

                                                      
1 See Hilfer (1995) (2000) for a review. 
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• Cauchy defined theTaylor series remainder; 

• Leibniz (1695) investigated fractional derivatives; 

• Euler (1738) introduced the gamma function and its integral; 

• Fourier (1822) provided a trigonometric definition of a 
fractional derivative; 

• Liouville (1832) defined fractional operators; 

• Riemann provided a definition similar to that of Liouville 
that differs by limits of integration; 

• Grunwald (1867) and Letnikov (1868) provided a difference 
approximation to the fractional derivative; 

• Following Hadamard, Marchaud developed fractional 
differential equations (1927); 

• Hurst published his empirical rescaled range methodology 
(Hurst index, defined using Nile data) (1951); 

• Caputo (1967) provided a definition of fractional integrals 
(pointed out by Liouville); 

• Mandelbrot and colleagues (1963), (1967), (1968) and Fama 
(1963) developed fractional Brownian motion. 

Since then, fractional Poisson (Laskin, 2003), Duncan et al 
(2000), fractional Brownian Motion (Mandelbrot et al. (1963, 1967, 
1968), fractional probability distributions and statistical fractional 
randomness defined by a Fractional Brownian Bridge (with fractional 
index 1/ 2 1H< < (with fractional index 0 1/ 2H< <  ) have been 
introduced by Tapiero and Vallois (2016) (2017) (2018a) (2018b). 
There is, in addition, a long series of applications.2 and developments 
by Potlubny (1999), Caputo (1967), Metzler and Klafter (2004), 

                                                      
2 Additional reviews and references include Hilfer (ed.) (2000) and 

Duncan, Hu and Pasik-Duncan (2000). See also, Bjork and Hult (2005), 
Cheridito (2001), Dacorogna et al. (1993), Muller (1992), Muller et al. (1990) 
(1993), and Dung (2008). 
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Additional references to fractional calculus abound, including, for 
example, contributions by Baleanu et al. (2010), Almeida, Pooseh and 
Torres (2015), and many others, broadly available in academic papers 
and books. Other discrete, continuous deterministic, as well as 
stochastic diffusion systems are defined by either differential equations, 
Fokker–Plank equations or other partial differential equations.3 

There are numerous applications to fractional calculus and their 
fractional operators altering the traditional rules of the differential 
calculus. They introduce both an opportunity to expand these rules and, 
at the same time, challenge their interpretation (and thus usefulness). 
For example, an application of Liouville operators to conventional 
probability distributions need not necessarily lead to conventional 
probability distributions. However, a fractional hazard rate as well as 
Brownian Motion imply complete probability distributions (Tapiero 
and Vallois, 2017). Extensions and applications to such developments 
have been made by numerous authors, as stated above.4 

3. Fractional Operators 
Fractional calculus is based on integral operators ��� and ���. 

Considering the fractional derivative 0 < � < 1 and � ≥ 0, they are 
defined by the Riemann–Liouville functions: 

                                                      
3 See, for example, Laskin (2003), Orsingher and Polito (2012), Miller and 
Ross (1993), Taqqu (1986) (2003), and Jumarie (2005a) (2005b) (2006a) 
(2006b) (2009) (2010) (2013). 
4 See Hurst (1951) for a fractional index based on R/S large samples analysis; 
see also Imhoff (1985), Tapiero and Vallois (1996) (1997), Vallois and 
Tapiero (1996), (2000), (2008). For ARFIMA regressions and other 
econometric models, see Baillie (1996), Baum et al. (1999), Beran (1992), 
Engle (1987), Engle, Itô and Lin (1990) and Bollerslev (1986). For 
applications applied to long-run dependence in stock prices, see Granger and 
Joyeux (1980) and Green and Felitz (1977). 
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����!� = 1Γ��� # �! − $��
�%�$��$, ! ≥ �&
�  

where %: [�, ∞[→ ℜ is a function such that , |%�$�|&� �$ < ∞ for any ! ≥ �. With the fractional derivative for % given by: ����%� = ����
�% for 0 < � ≤ 1 where � is the usual derivative. 
When � = 0, we write ��� = ��� = �� and ��� = ��� = ��, in which 
case, �����%� = %.  �����%�.  0 < � ≤ 1. 

Further note that at � = 1, ���%��!� = , %&� �$��$ and �� = �. 

Consider, for example, the function /0�!�: 

/0��� = 1Γ�1� �0
�, � > 0, 1 > 0 . 
Then, 

��/0�!� = 1Γ���Γ�1� #�! − $��
�&
� $0
��$ . 

We set $ = 5! 

��/0�!� = !�60
�Γ���Γ�1� #�1 − 5��
�50
��5 = !�60
�Γ���Γ�1� /06��!�.�
�  

Therefore,  ��/0 = ���
�/0 = �/06�
� = /0
� . 
When % is a probability distribution, its fractional distribution may or 
may not exist (as we shall prove). We define a Fractional Cumulative 
Density Function (FCDF) and a Fractional Probability Distribution 
(FPD) as follows: 
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Definition 1. Let 0 < � ≤ 1. 

Let %�!� be a non-negative function and 7�!� a non-decreasing function 
such that 7�8� = 0. The FCDF and the FPD associated with %�!� are: 

7��!� = ���%��!� = 1Γ��� #�! − $��
�&
� %�$��$, ! ≥ 0 

and 

%��!� = ���7��!� = ��
�%�!� = 1Γ�1 − �� #�! − $�
�&
� %�$��$, !

≥ 0. 
The proof for %��!� above follows from the following elementary 

fractional operators: %� = ��7 = ����
���% = ������
�% = ��
�%. 
Note that, an FPD is defined as the fractional derivative of its 

Cumulative Distribution Function (CDF) while the FCDF is defined by 
the fractional integration of the probability distribution. These 
distributions, defined by their fractional operators, may then be 
calculated numerically by the computational approach used for a 
fractional derivative and its integration. Intuitively, we define as well: 

�7��!� = ��7�!� = %��!� and 7� = # %�!���!��&
�  

where time intervals of order ��!�� emphasize a difference to standard 
integral calculus. Thus, � corresponds to a reference and standard 
definition of an integral, where � > 1 corresponds to an integral based 
on a “more refined” estimate of its CDF. Inversely, when � < 1, the 
time intervals tend to be larger, and thereby, its fractional FCDF 
coarser. For example, consider the exponential probability distribution 
with 0 < � < 1, 7�!� = 1 − <
=&, then: 
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7�!� = − > �−?!��
!�@� . 
Since ���!�� = A��6��A��6�
�� !�
�, the fractional derivative of 7 is 

��7�!� = − > �−?��
! Γ�
 + 1�Γ�
 + 1 − �� !�
�
�@�

= − B> �−?!��Γ�
 + 1 − ���@� C !
�. 
And therefore: 

%��!� = − B> �−?!��Γ�
 + 1 − ���@� C !
� 

and at � = 1, 
 %��!� = − B> �−?!���
 − 1�!

D
�E� C !
� = ? > �−?!��
!

D
�E� = ?<
=&. 

In other words, 7 is an exponential CDF, and its derivative is indeed an 
exponential distribution. The fractional exponential probability 
distribution defined by %��!� is not, however, a conventional 
distribution. Indeed, since %� = ��
��<
=&�, it is easy to deduce that its 
integral over [0, ∞[ is infinite. Note that: %��!� = ?�
�F�,�
��−?!� 

where FG,0���  is the Mittag–Leffler function given by: 

FG,0��� = > �HΓ�IJ + 1� .H@�  

This raises a number of issues pertaining to the meaning of fractional 
probability distributions as alluded to previously. Recently, however, in 
a work-in-process by Simon, Boudabsa and Vallois, a complete 
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fractional exponential distribution was devised. To do so, one may 
consider instead the fractional differential equation: ��7 =?�1 − 7�  0 < � < 1 and demonstrate that: 

7��� = > �−?���HΓ�1 + I�� = F�,��−?���.H@�  

4. Example: Fractional Discrete Probability 
Distribution 

Let K be a discrete random variable with its CDF given by:  

7��� =
LMM
N
MMO

0 P% � < ��
> J�

Q
�E� P% �Q < � < �Q6�

> J� = 1H
�E� P% � ≥ �H

 

Its fractional probability distribution defined and summed in the 
interval �Q ≤ � ≤ �Q6�, P = 1,2, … , I, is thus: 

%���� = 1Γ�1 − �� S> J��� − ����
Q

�E� T , �Q ≤ � ≤ �Q6�, P = 1,2,3, … , I. 
The proof is as follows. In the interval � ∈ �0, ��], 7��� = 0, and, 
therefore %���� = 0. In the interval � ∈ [��, ���, we note that: 

��
�7��� = 1Γ�1 − �� #�� − $�
�X
�Y

J��$ = J��� − ����
�Γ�2 − �� ,  
�� < � < ��. 

Then, 
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%���� = ��� ��
�%��� = J��� − ���
�Γ�1 − �� . 
Repeating these calculations over each interval, � ∈ [�Q, �Q6��, P ≤ I −1, we obtain: 

��
�7��� = 1Γ�1 − �� > J��� − �����E�  and recover 7� = 7 when 

� = 1. 
The implications of a fractional discrete distribution are then: at each 
point �Q, the fractional probability %� has a singularity and a fat tail 
since: 

%����~ 1Γ�1 − �� 1�� , � → ∞. 
5. Fractional Distributions and Randomness 

In practice, fitting data (that is, the real world) may modify the 
tools usually used in statistical modelling. For instance, the standard 
Brownian Motion can be replaced by a Lévy process so that new 
random variables have the “heavy tail distribution” property, b�Kc >��~ dXe, where � → ∞, for some J > 0. In the same spirit, it could work 

with a fractional Brownian Motion with a Hurst index � ∈ [0,1]. In the 
following, we seek to introduce statistical fractional randomness and 
their associated probability distributions defined by the fractional 
Brownian Bridge for 1 2⁄ < � ≤ 1 and J = 1 �1 − ��, 0 < � ≤ 1 2⁄⁄  
for stable distributions. Although there is a huge body of literature on 
this topic, our intent here is limited to a statistical approach to fractional 
randomness. 

Definition 1: Deterministic linear granularity 

A granular system is a triplet �g, K, �h&�&∈i�, such that: 

• g is a fixed point on the real line; 
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• K is the root, the origin of the granular structure; 
• the size of the grain at level ! is h& and induces a segmentation 

of the whole line via the collection of points jK + 
h& , 
 ∈ ℤl; 
• tt εa  is right-continuous decreasing (i.e., 0 < hm < h& for 

any n < !) and h� = 0. 

We say that this system is coherent if: h&6m = h& + hm, !, n ≥ 0.      (5.1) 

The coherence property implies that the segmentation with root K and 
granularity h&6m is included in the thinner granular system with any root 
of the type K + 
h& and size of grain hm. Mathematically:  jK + 
�h& + hm�, 
 ∈ ℤl ⊂ jK + 
hm + 
!h&, 
!, 
 ∈ ℤl. 
When � = [0,1], it is easy to deduce from 5.1 that h& = p!, for all ! >0, where p > 0 is a constant. We can give two examples. A microscope 
that has a finite number of possible zooms �h���q�qH, or markets, 
which are observed at different times: weekly, daily, hourly, per 
minute…. 

Definition 2: Stochastic Granularity 

A stochastic granular system is a granular entity rg, K, �h&�&∈[�,�]s like above, such that: K is a random variable and �h&�&∈[�,�] a collection of random variables, that is, a stochastic process 
that is independent from K and: h&6m = h& + hm̂, ∀!, n ≥ 0     (5.2) 

 

where hm̂ is a random variable independent of h& and has the same 
distribution as hm. 

Let �h&�&@� be a Lévy process, such that h� = 0, independent and 
stationary increments. Then, the random variable h&6m − h& is 
independent of h& and is distributed as hm, and therefore (5.2) holds. The 
standard Brownian Motion �v&�&@� is a Lévy process, but is not valued 
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in [0, +∞ ]. Nevertheless, any non-increasing Lévy process (also called 
a subordinator) is convenient, and in particular, the stable ones. 

6. Towards fractional integration 
We begin with few preliminaries. Let w be a non-negative 

random variable with a Probability Density Function (PDF) %: [0, ∞[→[0, +∞[ such that: 

# %�!��! = 1.D
�  

Let w� and w� be two independent random variables with PDF %� and %�, 
respectively, with the PDF of w� + w�: 

%��� = %� ∗ %���� ≔ # %��!�%��� − !��!, � > 0.X
�  

Returning to our granular system rg, K, �h&�&∈[�,�]s where �h&�&@� is a 
subordinator, and assuming that h& has a density function %& at any time ! > 0, then: %& ∗ %m = %&6m, !, n > 0.    (5.3) 

Recalling that K and h& are independent and that % is the PDF of K, then 
the PDF of K + h& is: 

Λ&��� ≔ % ∗ %&��� ≡ # %�5�%&�� − 5��5, � > 0.X
�  

We have already introduced the function /& in Section 3: 

/&��� ≔ 1Γ�!� �&
�|X}�, ! > 0. 
Then the family �/&�&}� is a semi-group, that is, it satisfies a property 
of the type (5.3): 
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/& ∗ /m = /&6m. /&, however, is not a PDF since: 

# /&����� = +∞D
� . 

This leads us to define for any 0 < � ≤ 1 the granular fractional 
density 7� as: 

7� = % ∗ /��X� = ��%��� = �A��� , %�!��� − 1��
�X� �!, � > 0    (5.4) 

where the Riemann–Liouville operator �� has been defined (Liouville, 
1832). 7� is formally the density of K + h�∗  where h�∗  is a pseudo-
random variable with “density” /�. The family �h&∗�&}� satisfies some 
independence property of type (5.3). 

It is convenient to introduce a (classical) non-negative random 
variable K~ with density function %. Note that 7� coincides with the 

Cumulative Distribution Function (CDF) of K~. Using the rules of the 
fractional integral and derivatives operator, we get: 7� = ��% = �����% = ���7� = ������
�7� = ��
�7�. 

The relation 7� = ��
�7� implies that 7� is a fractional 
probability distribution with order 1 − � (Tapiero and Vallois, 2016). 
Since 7� = ��%, we can also interpret 7� as the fractional CDF, (cf. 
also the Definition in Section 3). Recall, as pointed out previously, 7� 
is not a conventional CDF. It is clear that (5.4) implies that 7� admits 
the following stochastic representation: 

7���� = �A��� � �r� − K~s6�
�� , � ≥ 0   (5.5) 

where r� − K~s6�
�
 equals r� − K~s�
�

 if K~ < � and 0 otherwise. 

Furthermore, it is easy to check that the random variable r� − K~s6�
�
 

is integrable. We can deduce from (5.5) a first approximation of 7����. 
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Namely, let K�, … . , KH be a sample of K~. Then, for any ! > 0, the 
strong law of large numbers directly implies: 1I⎾��� r�! − K�� + ⋯ +6      �
� �! − KH�6      �
�s 

converges a.s. to 7��!�, as I → ∞. 

If � = 1, we recover the classical strong law of large numbers since r� − KQs6�
� = |����X�. Furthermore, assume that � > 1 2⁄ . Under 

some additional assumptions, we can prove that the random variable �� − K�6�
� is square integrable. This implies that we can apply the 
classical central limit theorem. For any � ≥ 0, the sequence of random 
variables 

�√H � �A��� ∑ r� − KQs6�
�HQE� − I7�����   (5.6) 

converge in distribution as I → ∞ to a Gaussian random variable ΛX. 
We can determine the covariance of the random function �ΛX�X@� (see 
Tapiero and Vallois (2018a) on the fractional Brownian Bridge). We 
may also prove a representation of �ΛX�X@� in terms of a stochastic 
integral with respect to the Brownian Bridge �vv�!�, 0 ≤ ! ≤ 1�, 
which, for simplicity, we refer the reader to our paper (2018a). If, 
however, % ≔ |[�,�] (i.e. K~ is uniform in [0,1]), then for any �, ΛX is 

distributed as vv����, where �vv��!�, 0 ≤ ! ≤ 1� is the fractional 
Brownian Bridge: 

vv���!� = 1Γ��� #�! − 5��
�&
� �vv�5�, 0 ≤ ! ≤ 1. 

Finally, when 0 < � < 1 2⁄ , we have to change the 
normalization in (5.6), and the limit is a stable random variable with 
parameter J ≔ 1 �1 − ��⁄ ∈]1,2[. Such a result can be found in 
Tapiero and Vallois (2018b). 
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7. Conclusion 
Financial Data analysed by parametric mathematical and 

stochastic models are constructed and used to predict future events and 
financial prices as well as to invest and manage risks. These models, 
however, are hypotheses, which are justified by their purported 
rationality and statistical estimates. The statistical treatment and 
analysis of the sampled data alter the traditional approach to financial 
complete market pricing models. It consists of the expectation of future 
prices and an appropriate filtration and conditional martingale 
providing a unique price. These differences are embedded in their 
applications to discrete and “fractional time” defined by their calculus. 
For example, given a continuous-time stochastic process, discretized: ��& = %�!, �&��! + ��!, �&����!�  
and �&6�& − �& ≃ %�!, �&�Δ! + ��!, �&���&6�& − �&� 
where �! is small and ��!� defines a Brownian Motion. Higher order 
approximations of %�!, �&� and ��!, �&� may be used further using 
Milshtein approximations. 

Our conclusion to this text is that randomness is also altered by 
its fractional application due to its fractional time. This Prisme has 
thereby shown that depending on the fractional index, fractional 
randomness based on the statistical approach to fractional calculus, as 
shown for a fractional index 1 2⁄ < � < 1, results in a Brownian 
Bridge, while for 0 < � < 1 2⁄ , an alpha stable distribution results. 
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