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Kiyosi Itô is a culminating hero of the story of how probability
became a part of mathematics. It did not start out that way. This is a tale
that includes a scandal involving Henri Poincaré, some eccentricity in
the person of Norbert Wiener, and the music of Itô.

Although probability  was not  always part  of  mathematics,  we
must begin by trying to think of what is mathematics. There are many
definitions. Let us start with Poincaré, who said, “Mathematics is the
art of calling different things by the same name”. This is a profound
statement. It has a lot to do with abstraction, which was his definition of
mathematics. Now, what did Poincaré think about probability? In 1912,
he said, “One can scarcely give a satisfactory definition of probability.”
In his university years, Itô wrote that he doubted whether probability
was  an  authentic  mathematical  field.  Ironically,  by  the  end  of  his
career,  no  one  doubted  that  Professor  Itô  was  a  world-class  and
celebrated mathematician whose field was probability!

Probability is very difficult to grasp, and people have known that
for  a  long time.  Let  us  look at  Hilbert’s  Sixth  Problem concerning
mathematical physics:

6. Mathematical Treatment of the Axioms of Physics. The
investigations on the foundations of geometry suggest the
problem:  To  treat  in  the  same  manner,  by  means  of
axioms,  those  physical  sciences  in  which  already  today
mathematics plays an important part; in the first rank are
the theory of probabilities and mechanics.1

It thus specifically called for an axiomatization of probability. Why is
probability so hard? Let us go back to Poincaré, who said in 1896, that
when learning mathematics,  it  is  a good idea to remember what  the
biologists say: ontogeny recapitulates the phylogeny. In other words,
the  development  of  the  individual  recapitulates,  in  some  sense,  the
same stages that  were gone through by the species. Think about the
species and the development of geometry, for example: geometry has
been around for thousands of years, so the species was able to do that
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rather quickly. Euclidean geometry is not easy, but many people do it
even at the high-school level.

Probability took a very long time to develop into its own field.
Two traditions have been built  up on two questions: the question of
equal probabilities and the question of small probabilities, also known
as  Cournot’s  principle,2 which  states  that  small  probabilities  do  not
really occur. Those are the two basic ideas, but nobody knew what to
make of them, and they were the source of great controversy. Even the
basic question – “What is a random variable?” – was difficult. One of
my Harvard  professors  explained  that  students  have a  difficult  time
with  these  concepts,  because  no  one  ever  defines  for  them what  a
variable is – not a random variable, which is even harder –, but simply
a basic variable. Sometimes it is equal to 2, sometimes it is equal to 4.

Now let us turn to Bertrand Russell’s definition of mathematics.
In 1918, he said, “Mathematics may be defined as the subject in which
we never know what we are talking about nor whether what we are
saying is true”.3 People were indeed talking about these things, but they
had no idea what they really meant.

This all changed for Itô when he was working at the Japanese
National Statistical Bureau. He wrote:

Soon  after  joining  the  Statistics  Bureau  of  the  Cabinet
Secretariat, when I was still grappling with the question of
how to define the random variable in probability theory, I
found  a  book  written  by  the  Russian  mathematician
Kolmogorov.  Realizing that  this  was exactly what I had
been looking for, I read through the book in one sitting. In
Grundbegriffe  der  Wahrsheinlichkeitsrechnung (Basic
Concepts  of  Probability  Theory),  written  in  German  in
1933, Kolmogorov attempted to define random variables
as functions in a probability space, and to systematize the
theory of probability in terms of the theory of measures. I
felt as if this book cleared the mist that was blocking my
vision, leading me to finally believe that probability theory

2

© Cournot Centre, October 2019



can be established as a field of modern mathematics. (Itô,
19984)

Andreï Kolmogorov’s book was thus the key for Itô to defining
probability  as  a  field  of  mathematics.  Other  mathematicians  had
previously  tackled  this  problem,  but  Kolmogorov  is  the  one  who
completed  probability’s  modern  formalism,  as  Glenn  Shafer  and
Vladimir  Vovk  remind  us.5 Borel,  in  1905,  noted  that  the  new
integration founded by Lebesgue on the concept of sets was an ideal
tool for formulating probabilistic questions.6 Fréchet, in 1915, extended
the  notion  of  the  integral  using  the  concept  of  abstract  measure.
Kolmogorov used their research to formulate a fully constructed model.

Kolmogorov defined a measurable space as a pair (S, Σ), where S
is a set and Σ is a sigma-field, that is, a collection of subsets of S that
includes Ø and S, and that is closed under countable set operations. He
defined a  probability  space as  a triple  (Ω,  F,  P),  where (Ω,  F) is  a
measurable  space.  We  can  think  of  Ω  as  the  space  of  all  possible
worlds,  present  and future,  associated with the space of all  possible
subsets of Ω. As this last set is often considered to be too broad, we talk
rather about the sigma-field and its elements, which are events F. Such
events  are  often  represented  by  Venn  diagrams,  such  as  the  one  in
Figure  1.  Basically,  Ω  is  simply  a  place  where  we  draw the  Venn
diagrams.

In Figure 1, the circle on the right represents the event of rain.
We group together a lot of different worlds in one set, which represents
the event that “it is raining”. We can also say,  it is raining and  it is
Tuesday. The idea that “it is Tuesday” is another event, represented in
the circle on the left.  You can intersect them, take their unions. The
definition of a sigma-field indicates that you can do this for sequences
of  sets.  You  can  do  everything  with  set  operations  –  unions,
compliments,  intersections  –  and  still  remain  in  that  sigma-field  of
events. That is an important point, because if we try to take arbitrary
subsets of a space, we get into trouble with trying to assign a measure
in a sensible way. There are many kinds of paradoxes that one can fall
into, so we must restrict ourselves to some sort of sigma-field.
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Figure 1: Venn diagram

This was a great innovation, because it made it possible to have a
measure that is defined on the sigma-field in a consistent way. If it is a
measure that is countably additive, in other words, if we have a series
of disjoint sets, the measure of that whole sequence will be the sum of
the measures of the sets individually. If the measure of the entire space
is one, then we can call that a probability measure  P, that is, a non-
negative (between 0 and 1) and a countably additive set function on the
measurable space with total mass 1. We now take that for granted, but
this was not obvious before.

Continuing  with  Kolmogorov’s  probability  axiom,  A ∈ F are
called measurable sets, which are thought of as events. The measure
assigns to each a number P(A) between 0 and 1 that we interpret as the
probability of that event. Note, for example, thatA⊂B ⇒P (A)≤P (B ) .

Before Kolmogorov, a lot of work had been done on measures,
on countably additive set functions, but it was not called “probability”.
Other  work was done on probability,  but  there  was confusion as  to
whether  things  were  countably  additive.  Many  questions  remained,
such as: how could a point have no mass, but when points are put on a
line, then the line has mass? Everyone had trouble grasping these ideas.
There are, nevertheless, very simple intuitions that have come out of
this. For example, if we have an event and a sub-event, the probability
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of the event must be bigger than that of the sub-event, because if we
consider the compliment of the two, with the inner one, it is disjoined.
There  was  really  nothing  else  to  probability,  except  for  that  sort  of
additivity.

Now let us turn to random variables. A random variable is simply
a measurable function on a probability space. To be measurable, the
function can only depend on the events. It has to be constant on any of
these events,  because it  only depends, for example,  on whether it  is
raining, or whether it is Tuesday. It does not depend on whether I am in
this world or that world (outside the sigma-field). There are a lot of
things that we do not distinguish; we call them by the same name by
putting them into one of these elements of the sigma-field.

A random variable is a measurable function X from a probability
space (Ω,  F,  P)  to a measure space  (S,  Σ) called the state space. This
just means that the inverse image of a measurable set in the state space
is an event in the probability space, and so can be assigned a measure.

Kolmogorov defined expectation as an integral:E (X )=∫ X (ω )dP (ω ) ,

and conditional probability, given an event B, such that P(B) > 0, by the
following expression:P (A|B )=P (A∩B )P (B ) .

Furthermore,  Kolmogorov used  the  arguments  of  measure  theory  to
extend the  notion  of  conditional  expectation,  given an  event  B,  and
defined the conditional expectation, given a random variable.7

Now, let us look at what Joseph Doob said in 1997:

It was a shock for probabilists to realize that a function is
glorified into a random variable as soon as its domain is
assigned a probability distribution with respect to which
the function is measurable.
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In  a  1934  class  discussion  of  bivariate  normal
distributions, Hotelling remarked that zero correlation of
two jointly normally distributed random variables implied
independence, but it was not known whether the random
variables  of  an  uncorrelated  pair  were  necessarily
independent. Of course he understood me at once when I
remarked  after  class  that  the  interval  [0,  2pi]  when
endowed  with  Lebesgue  measure  divided  by  2pi  is  a
probability measure space, and that on this space the sine
and cosine functions are uncorrelated but not independent
random variables.  He  had not  digested  the  idea  that  a
trigonometric function is a random variable relative to any
Borel probability measure on its domain.

The fact that nonprobabilists commonly denote functions
by  f,  g,  and  so  on  whereas  probabilists  tend  to  call
functions random variables and use the notation X, Y and
so  on  at  the  other  end of  the  alphabet  helped  to  make
nonprobabilists suspect that mathematical probability was
hocus pocus rather than mathematics.  And the fact  that
probabilists called some integrals ‘expectations’ and used
the letters E or M instead of integral signs strengthened
the suspicion. (Doob, 19978)

The axioms were thus a rhetorical contribution, not research. The
important thing was to write them down. People knew about measures
beforehand;  they  even  knew about  measures  that  assigned  1  to  the
whole  space.  The  amazing  achievement  was  to  be  able  to  call  it
probability. Before that, people talked about these two things as if they
were quite different.  This was thus a rhetorical  kind of triumph. Itô
needed to work through these things and define them in order to use
them to study stochastic processes.

As we understand it these days, a stochastic process is simply a
collection of random variables indexed by a set (usually time). We can
think of it  as  a  series of successive coin flips:  {X1,  X2,  X3,…}. The
sigma-field is generated by finite subsets of those random variables that
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we assign something to in order to make them measurable. If I say that
on flip numbers 3, 7 and 15, I get a head, a tail and a head, that is called
a cylinder set.  It  is  only a finite number of  things:  I  know that  the
probability of each flip is 1/2; therefore, the probability of that entire set
is 1/8.

Kolmogorov  had  a  theorem  that  we  can  extend  from  the
cylinders under many circumstances, and we get a sigma-field on the
whole set. That way we skirt all of the questions on the probability of
an infinite sequence, and everything else. It is possible, but it has to
have probability 0, and so on.

We can think about the probability space just for these coin flips
as all of the sequences of Hs and Ts. We have a shift map that shifts
along and is  called a Bernoulli  Process.  That  is  the simplest  sort  of
example of a stochastic process. The point of this model is to have a
random variable that is defined on this triple (Ω, F, P) and takes values
in the space of all Hs and Ts. So the nth flip is a measurable function:X n :(Ω , F ,P )→(S={H , T },Σ).

Imagine Tyche, the Greek goddess of chance, reaching into the
set  of  all  these  worlds  and  pulling  out  ω ∈ Ω, and  that  determines
Xn(ω).

Now, if we think of that in terms of coin flipping, then let me
recall  what  Johann Wolfgang von Goethe said,  “Mathematicians  are
like  Frenchmen:  whatever  you  say,  they  translate  into  their  own
language, and forthwith, it is something entirely different.” So this is
what a mathematician thinks of a coin flip; many other people think of
a coin flip differently. It is actually not particularly natural or intuitive.

To drive home that point, I would like to explain how behavioral
economists  think  of  these  simple  ideas  of  probability.  My example
comes  from Amos  Tversky and  Daniel  Kahneman  (1974).9 It  is  an
exercise that we do with students. We tell them that Linda is 31 years
old.  She is  single,  outspoken and bright.  In  college,  she majored in
philosophy and was concerned with discrimination, social justice and
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anti-nuclear rallies. Rank these probabilities from 1, the most likely, to
5, the least likely.

• Linda is a teacher.

• Linda works in a bookstore and takes yoga.

• Linda is a bank teller.

• Linda sells insurance.

• Linda is a bank teller and is active in the feminist movement.

Which do you think is most likely? And which do you think is
least likely? Put them in the order that you think, given what you know
about Linda.

Why am I  asking these questions? When you ask people  this
question, the issue is who ranks “she is a bank teller and in the feminist
movement” higher than the possibility that “she is a bank teller”. Most
people do that. What is wrong with that? The problem is AND. Let us
go back and think about the events. The event that she is a bank teller is
large; the event  that  she is a bank teller  AND active in the feminist
movement is much smaller. This example shows that the very first and
only principle of probability is violated routinely by people when you
ask them questions of this kind. Consequently, this is not as natural and
intuitive as we sometimes pretend.

Let me give you another example: In the first five pages of the
typical English-language novel, how many six-letter words would you
expect  to  find  with  the  penultimate  letter  “n”,  that  is,  of  the  form:
- - - - n - ?

This is a probability question in another form. In five pages of a
book,  there are probably 3000 words.  The question is,  “What is  the
probability  of  finding  this  type  of  word?”  What  are  the  types  of
numbers that you would get? You would not say 1000. People say 1, 2,
3… 50, 60… We ask half of the class this question.

Then we ask the other half of the class the following question: In
the first five pages of a typical English-language novel, how many six-
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letter words would you expect to find ending in “ing”,  of the form:
- - - ing?

To that question, the students’ answers are not 1, 2, 3, or even 50
or 60. People suppose many more, perhaps a few hundred words. This
example shows again that estimating these sorts of probabilities greatly
depends  on  how  we  ask  these  questions.  There  is,  once  again,  a
violation of the first and only principle of probability, which our minds
tend to get mixed up about.

Let me give you another example: You know that Tom is either a
salesman or a librarian.  His personality has been described as quiet.
Which is more likely, S or L?

Another  question:  Fred  is  either  a  salesman or  librarian.  You
know nothing else. Which is more likely? Some people say one-half,
because there are only two possibilities. We know that is wrong. There
are a lot more salesmen in the world than there are librarians. In the
United States,  according to the Bureau of Labor Statistics,  there are
about 100 times more salesmen than librarians. That means that if even
one in 10 salesmen happens to be quiet, it is more likely that you are
looking at a salesman who happens to be quiet than a librarian. This is
about conditional probability. We said we all understand Kolmogorov’s
definition  of  probability,  but  it  is  not  that  simple.  Even though the
probability of a person being quiet when s/he is a librarian is high, that
was not the question. The question was: For a person who is quiet, what
is the probability of being a librarian, or a salesman? This is an example
of the base rate fallacy: if presented with related base-rate information
(that  is,  generic,  general  information)  and  specific  information
(information  only  pertaining  to  a  specific  case),  the  mind  tends  to
ignore  the  former  and  focus  on  the  latter.  These  are  things  that
evolution has not made us good at.  Nature, for its own reasons, has
made this sort of axiom difficult.

To go back to the  stochastic  processes and coin flips,  here  is
another question that you can ask students: tell them to go home, not
flip a coin, but just write down Hs and Ts that could have come from
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flipping a coin. Sometimes I ask them to do 100, which takes a little
time. But if you ask them to do only 20, what is the probability that the
students’ papers will have exactly 10 heads and 10 tails? Almost all of
them do. If they can count, they will give you a sequence of 20 heads
and tails  with  exactly  10 Hs  and 10  Ts.  What  is  the  probability  of
getting four heads in a row from the students? Almost never. You never
see all heads either.

You see something more like the following example:

HTHHTHTTTHTHHTHTTHT

HHTTTHTHTTHHTHTHTTH

THHTTHTHTHHHTTHTHTH

You can ask them about the average fraction of heads as you flip
more and more. If it is a fair coin, everyone believes that is supposed to
be one-half. We think that is the definition of the probability of one flip,
when you can do things over and over again. To test that correlation
between abstractions and the real world, a researcher I know conducted
an  experiment  in  which  he  filled  a  high-school  gymnasium  with
students and asked them to flip coins for several hours. One student
flipped; the other wrote down “heads” or “tails”. This experiment gave
him  huge  amounts  of  data  about  coin  flips.  Nevertheless,  when  he
applied statistical tests to verify the data, he failed all of the tests! The
data was terrible and did not look independent; everything came out
about  half-and-half.  He could not  understand what  had gone wrong.
When he went back and checked the experiment, he realized that at the
beginning of the experiment, the students flipped the coin high up in the
air and wrote down the result. After about 10 minutes, however, the
students got tired, and instead of flipping the coin high enough for it to
turn over several times, they only flipped it a little bit, and the coin only
turned over two or three times. So once they got tired, autocorrelation
occurred, and all  the statistics went wrong. This example shows that
when we try these sorts  of experiments, we get a sequence,  and we
think that  is  what  the probability is,  but  it  does not  always work in
nature.
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Assigning probability to cases that you cannot repeat is another
interesting  question;  this  is  particularly  the  case  in  decision  theory.
Sometimes  I  ask  students,  “What  does  it  mean  to  say  that  the
probability of rain tomorrow is 80%”? They answer, “If you had 10
days, it would rain eight of those days”. Does that make sense? No, that
does not make sense. If you had 100 days just like today, it would rain
80 of those days? None of that makes sense, because you never have
100 days just like today.

Continuing  with  the  coin  flips  and  stochastic  processes,  the
probability of getting exactly 10 heads is less than 0.2, even though all
the students write it down. The probability of getting four heads in a
row, when you write down 20, is almost 80 per cent (even though they
never write it down). The probability of getting all heads is about 1 in 1
million.  For  the  average  fractions,  there  is  the  strong  law  of  large
numbers, originating from the work of Emile Borel. In his fundamental
paper of 1909, Borel defined the notion of convergence with probability
1 and formulated a first statement of the strong law of large numbers.10

He said that the fraction of heads in a sequence of fair tosses tends to
0.5, except with a vanishingly small probability.

This is  where the issue of small  probabilities comes in.  If  we
want  to  find  the  probability  in  the  way  I  just  described,  we  do  a
sequence, take the average, and if it comes out to 0.5 that must be the
probability  for  one  coin  flip.  That  is  a  problem,  because  if  it  only
happens with probability 1, how do we know that this time, it worked?
You need this interpretation to make probability theory join with the
real world; you need the Cournot principle. People have argued back-
and-forth about it. That is another reason why the Kolmogorov axioms
made  such  a  difference  in  helping  people  to  think  about  these
concepts.11

Let  us  now  turn  to  how  the  professionals  reacted  when  this
axiomization came out. When I was a graduate student, people talked
about “French probability”. Ironically, there was a lot of resistance to
probability in France, and, in particular, to the ideas of Paul Lévy.12
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Lévy began his career as an analyst,  specializing in functional
calculus. After WWI and after publishing the works of René Gateaux,
he  turned  to  probability  and  observed  an  extraordinary  connection
between functional calculus and probability.13 Jacques Hadamard, his
Ph.D. adviser, had hoped that Lévy would be the great future specialist
of functional calculus and regretted his change of discipline.

Again, we come up against the question as to whether probability
was considered to  be part  of  mathematics.  Whatever  the  case,  Lévy
carried probability further into the discipline (Barbut et al., 2014). Doob
wrote  the  following  about  Lévy,  as  a  great  pioneer  in  the  field  of
probability:

[Paul Lévy] is not a formalist. It is typical of his approach
to mathematics that he defines the random variables of a
stochastic process successively rather than postulating a
measure space and a family of functions on it with stated
properties,  that  he  is  not  sympathetic  with  the  delicate
formalism  that  discriminates  between  the  Markov  and
strong Markov properties, and that he rejects the idea that
the axiom of choice is a separate axiom which need not be
accepted.  He  has  always  traveled  an  independent  path,
partly because he found it  painful to follow the ideas of
others.14

Paul-André  Meyer  wrote  of  Lévy’s  1948  seminal  book  on
stochastic processes and Brownian motion:15 “Like all of Lévy’s work,
it is written in the style of explanation rather than proof, and rewriting it
in the rigorous language of measure theory was an extremely fruitful
exercise for the best probabilists of the time (Itô, Doob)” (Meyer, 2009
[2000]).16 It  was  indeed Itô’s  vision  that  took Lévy’s  intuitions  and
beautiful painting and changed it into something rigorous and more like
mathematics.

Itô himself said,
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During those five years [at the Cabinet Statistics Bureau,
1938–43]  I  had  much  free  time,  thanks  to  the  special
consideration given me by the then Director Kawashima...
Accordingly, I was able to continue studying probability
theory,  by  reading  Kolmogoroff’s  Basic  Concepts  of
Probability  Theory and  Lévy’s  Theory  of  Sums  of
Independent  Random  Variables. At  that  time,  it  was
commonly  believed  that  Lévy’s  works  were  extremely
difficult, since that pioneer of the new mathematical field
explained  probability  theory  based  on  his  intuition.  I
attempted to describe Lévy’s ideas, using precise logic that
Kolmogoroff  might  use.”  (O’Connor  and  Robertson,
200117)

Coming  back  to  the  idea  of  mathematical  probability,  the
question arises of why should we work with these axioms? We have
already seen that most people, including a lot of great mathematicians,
do not respect them. The triple (Ω, F, P) remains very mysterious. Are
there any examples of how it is used and why it comes up? Everybody
does it now, but why?

To answer those questions, let us look at Poincaré’s position on
Ω, Wiener’s interpretation of measures and Itô’s take on sigma-fields.
In 1889, King Oscar II of Sweden celebrated his 60th birthday. Mittag
Leffler  organized  a  prize  for  offering  a  collection  of  mathematical
works  to  the  King.  One  of  the  proposed  problems  was  to  show
something about the stability of the solar system. Poincaré chose that
topic and modeled the restricted three-body problem as a periodically
forced pendulum.18 We can consider the space of all solution curves,
much like  Ω: we are looking at all of the possible solutions. Poincaré
was the first one to start drawing pictures like this:
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He had the idea that if we periodically force it, then we can see a
stroboscopic  picture  at  every period.  If  we write  that  down,  we get
some of these features. He assumed, however, when he was doing it,
that the asymptotic curves that came out of the unstable equilibrium –
the straight-up equilibrium – would have to connect nicely with one
another.  He thought he had proven the stability results  for the solar
system. He won the prize, but then one of the editors said, “How do you
know  that  they  don’t  cross  instead  of  joining  and  making  a  nice
stability result”?

Poincaré  thought  about  it  and  eventually  realized that  he  was
completely wrong.  He had not  proven the stability result,  because if
those manifolds cross transversely at one point, they must cross again at
the  image  point  and  at  the  pre-image  point,  which means  that  their
images and pre-images have to cross too (Figure 4).
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Figure 2: Unstable equilibrium of the three-body problem
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This is now called the Poincaré tangle. From all these asymptotic
curves,  we get  a big mess,  and what  results  from that  mess  is  now
called “horseshoes”.

We obtain chaos theorems like the following. Let’s say that we
have a forced pendulum, and we write down the results. The pendulum
makes some crazy motions, but every time it passes through the lowest
point, we write down an R if it comes from the right or an L if it comes
from the left. This is a way of coding those crazy motions. The theorem
that we can prove is that any sequence is possible. We thus obtain a
space  of  all  the  sequences  of  Rs  and  Ls.  This  is  completely
deterministic. For the correct initial conditions, we could have it go R,
R, R, R, R from the beginning of time, then all of a sudden, tomorrow,
it  goes to  L.  It  could do three Rs,  one L,  four Rs.  It  is  completely
unpredictable.  This should remind us immediately of coin flips:  any
sequence is possible.

This is a model of the Kolmogorov space, which can actually be
found in the mechanics of a deterministic system – something that has a
measure.  It  is  called  the  “Liouville  measure”,  because  mechanical
systems have a preserve measure.  It  acts just  like the  coin flipping.
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People  got  very  excited,  saying  that  we  had  found  chaos  in
deterministic systems, which is indeed worth getting excited about.

What I find significant, but which has been mentioned very little,
is that this is actually an example of the model for coin flipping. I am
not sure that anyone has ever before produced a system in which we
know what the omega is, what the function is, that we know what we
are writing down, and we obtain a sequence of Rs and Ls. If we change
those into Hs and Ts, we have something that is behaving the way a
stochastic process is supposed to.

This is  a case where,  instead of being mysterious (and this is
about the only case that I know of), we actually see that the omega in
this construction makes sense;  we obtain a stochastic process out  of
something that exists in nature and the mechanics of which everyone
can understand and accept.

Now let us move from coin flipping to walking.

Suppose that we step right or left, based on a coin flip, then we
get a stochastic process where Xn is your location after n steps, which is
called a “random walk”.

16

Figure 5: Simulation of several independent random walks
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Here is what happens when we take a scaling limit of the random
walk. First, we fix a real t ≥ 0, and then take the limit as the number of
steps n goes to infinity with t = nδ and the step size is equal to √δ. As δ
goes to 0, we seem to get a stochastic process W(t) that is normal (by
the  Central  Limit  Theorem)  with  mean  zero,  variance  t,  and
independent increments.  If it  is  also continuous in  t,  mathematicians
would now call this {W(t)}, the standard Wiener Process.

This is what the paths look like:

In other applications, this was called Brownian motion for a long
time (see Brown, 1828).19 Bachelier (1900)20 was the first to write about
it in finance. Although they found his work interesting and original, the
mathematicians of  the time were not  ready to consider  finance as a
worthy subject for applied mathematics, unlike physics, for example.

17

Figure 6: Simulation of several independent Wiener processes
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Bachelier  did  not  arouse  interest  among  them.  He  did,  however,
immediately catch the attention of actuaries.

In  physics,  Einstein  (1905)21 proposed  the  first  model  for
Brownian  motion,  which  was  later  extended  by  Langevin  (1908),22

before Marian Smoluchowski (1916) added his contribution.23

Brownian motion is a fascinating example of a highly vibrating
motion. It is similar to adding up a lot of white noise rather than adding
up a lot of steps in one direction or another.

There is a question as to whether Brownian motion even exists. It
is  a  rather  strange  question,  because  Brown  looked  through  the
microscope and saw things moving around. People thought that they
knew  what  Brownian  motion  was,  and  they  had  made  a  lot  of
abstractions  and written  them down.  Then Einstein  solved  diffusion
equations, making it possible to calculate Avogadro’s number on the
space. There was thus a physical sense that all this existed. Making a
mathematical existence proof turned out to be very hard, however.

To build a mathematical  model  of  Brownian motion,  in 1923,
Wiener  used  the  principles  he  found  in  Lévy’s  first  book,  Leçons
d’analyse  fonctionelle.24 One  of  the  things  that  Wiener  did  was  to
investigate the properties of these paths to show that with probability 1,
the paths are of unbounded variation on every interval. That means that
they  wiggle  wildly  like  the  tangle  and  are  nowhere  differentiable.
Intuitively,  paths  are  not  differentiable  since  W(t + h) – W(t)  has
variance h, 

so ( 1h ){W (t +h )−W (t ) } has a variance of
1h .

As  h  goes  to  0,  it  means  the  variance  is  huge,  which  is  just
another way of saying that it is very, very wiggly. To say that it blows
up like that with probability 1 means that it requires a measure μ on the
space of continuous paths to make it a probability space. That is now
called the Wiener measure. We can, in fact, think of a Wiener Process
as simply a single function-valued random variable from the probability

18
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space  (Ω, F, P)  to  the  probability  space (C [ 0 ,∞) ,Σ ,μ) whose
elements are continuous functions on t ≥ 0.

If  we  want  to  make  a  Wiener  measure,  then,  similar  to  coin
flipping,  we  consider  finitely  determined  cylinders S⊂C [0 ,∞) of
form:

And A1, …, An are Borel sets in ℝ with product A.

Using the Gaussian densities of a Wiener Process, we set:

where k n={√(2π )n (t n−t n−1 ) ... (t 1−t 0 )}
−1 .

The general expression would be:d μ=k exp[−1
2∫0

t x 2 (s )ds ]Dx ,

which is suggestive, but does not have any obvious meaning.

If we have a finitely determined cylinder, the expression above
dx1, dx2,… dxn, makes sense. But in the third line, we have an integral
of a derivative of this path. As already mentioned, however, there is no
derivative anywhere. This is,  therefore, complete nonsense. Then we
have some sort of flat measure on the space of all these, and that does
not exist either. All this shows that when we do the obvious thing, we
get into deep trouble.

People tried a lot of different ways of doing this. Wiener himself
found a basis for L2[μ ] .

Assuming  it  exists,  one  way  Wiener  constructed  Wiener
Processes on [0,1] was to take a sequence of Gaussian random variables
Y1,Y2,Y3,… with mean 0 and variance 1 defined on some probability
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S={B ∈C [0 ,∞):B t j∈A j  for 1≤j≤n }  where 0=t 0<t 1<t 2 ...<t n .
μ (S )=k n∫A exp[−1

2{(x n−x n−1)
2

(t n−t n−1)
+...+ (x 1−x 0 )

2

(t 1−t 0 ) }]dx 1dx 2 ...dx n
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space  (Ω, F, P)  and  some  orthonormal  basis {φ n}n=1,2... of  the  spaceL2[μ ] of  square  summable  functions  on  [0,1]. Then  the  random

sequence

is  uniformly convergent,  and thus  defines  a  continuous path with  P
probability  one.  Such  an  orthogonal  basis  for L2[μ ] is  what  Wiener

called “homogeneous chaos”. He found some ways of saying that we
could  produce  these  sorts  of  paths,  the  Wiener  paths.  The  truth,
however, is that it was not settled rigorously until 1968, in a paper that
Itô co-authored with Makiko Nisio25 giving origin to the references of
the Wiener–Itô integral and the Wiener–Itô decomposition of L2[μ ] .

There are lots of stories about Wiener and his eccentricity. It is
not surprising that it was very hard to make sense out of what he was
doing: half of it was nonsense and half of it was brilliant. Itô was polite
in  his  introduction  to  Wiener’s  papers.  Speaking  of  the  subsequent
work of Lévy,  Shizuo Kakutani,  Doob and himself,  he wrote,  “It  is
astonishing  that  all  such  developments  stand  on  the  basis  given  by
Wiener’s work on Brownian motion”.

Itô’s challenge was to define the integral of a stochastic process
along the path described by a Wiener Process. It was not the first time
that  an  attempt  was  made  to  define  a  stochastic  integral,  but  Itô’s
formulation  proved  particularly  operational.  It  makes  it  possible  to
formulate  a  practical  differential  calculus,  extending  ordinary
differential calculus:I (ω )=∫s=a

b X s (ω )dW s (ω )  . 

Wiener  had  handled  deterministic  integrals  by  integrating  by
parts and using the ideas of Percy Daniell (the Daniell integral26). The
usual approach would be to start with simple functions and a partition
of |a , b ] , then  approximate,  like  Bernhard  Riemann  (the  Riemann
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W (t ,ω )=∑n=1

∞ Y n (ω )∫
0

t
φ n(s )ds
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integral),  by adding up the differences  of  the  Wiener  processes  and
weighting it by the stochastic process  X at some point in between the
points on the partition:I≈∑i=0

n X (s i ) [W ( t i+1 )−W ( t i ) ]  with t i≤s i≤t i +1  . 

The  problem  is  that  because  the  paths  are  of  unbounded
variation,  different  ways of choosing the  si matter.  There is  massive
wiggling, and the answer that we get when we try this naive approach
depends on how we chose the si and the intervals of the partition. We
can get  almost  any answer we want by doing this –  even the over-
shrinking of subintervals – just because there is too much wiggling.

Itô realized, therefore, that we must deal with integrals that do
not depend on the future. This makes a lot of sense for finance, because
the future is never known. The way of formalizing this was to think
about a filtration. A filtration of (Ω, F, P)  is a family of sigma fields
such  that,  for  all  s < t,  we  have  Fs ⊂ Ft ⊂ F.  F2 = {events  known at
t = 2}, for example:  A = {HHHH, HHTH, HHHT, HHTT} is “2 heads
first”.  So,  we  say  that  a  process  {Xt}  is  adapted  to  the  filtration
generated by {Wt}, if each Xt is measurable with respect to Ft. So it only
depends on the things known up to that time; it does not know anything
about the future and cannot depend on it.

Continuing, we get independence using the left  end point for simple
functions:I≈∑i=0

n X (t i )[W ( t i +1)−W (t i ) ].
This shows that you can take such a procedure and actually define an
integral.

So for square summable Xt, this converges to define Itô’s integral:I (ω )=∫s=a
b X s (ω )dW s (ω ).  

21
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The Itô integral was the insight of thinking about these filtrations
and defining them in such a way as to allow us to do Itô calculus. There
are some wonderful  formulae for Itô calculus.  Itô Integration is  just
what is needed in many applications, especially in finance where you
don’t  get  to see ahead.  Itô used this to solve Stochastic Differential
Equations, such as:dX =b (X , t )dt +σ (X , t )dW .  

For a solution X, and Y(t) = f (X (t), t), Itô’s Formula says:

This is a strange chain rule. For Y = f (X), b = 0, σ=1, we have:dY =f ' (X )dX + 1
2
f ' ' (X )dt .

To conclude, we abstract a lot from nature to mathematics, and
we leave a lot of things out.  Then the mathematics forces surprising
conclusions.  The  bigger  surprise  is  that  these,  in  turn,  can  tell  you
something new about  nature  if  we  are  careful.  This  is  also  true for
Wiener processes: they move infinite distances, do not have a velocity
and are otherwise unrealistic. People are not very realistic either when
they flip coins,  because they get  tired and they do not  do what  the
models have specified. Probability is also about people and how they
bet. It is Bayesian: subjective probability calibrated by frequency! What
Goethe said about mathematicians being like Frenchmen is important.
The  amazing  thing  about  all  of  this  is  that  Itô  himself  was  very
surprised when he won the Gauss  prize,  because it  was for  applied
mathematics.  He  thought  of  himself  by  that  point  as  a  real
mathematician. He also won awards for regular mathematics. And his
probability is certainly part of mathematics now.

I would like to end by saying that he wrote a lovely little text
about music:
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dY =[∂ f∂ t (X , t )+b (X , t )
∂ f
∂ x (X , t )+ 1

2
σ 2 (X , t )

∂2 f
∂x 2 (X , t )]dt +σ (X , t )

∂ f
∂ x (X , t )dW
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Only  mathematicians  can  read  “musical  scores”
containing  many  numerical  formulae  and  play  that
“music” in their hearts. Accordingly, I once believed that
without  numerical  formulae,  I  could never  communicate
the  sweet  melody  played  in  my  heart.  Stochastic
differential  equations,  called  “Itô  Formulae”,  are
currently in wide use for describing phenomena of random
fluctuations  over  time.  When  I  first  set  forth  stochastic
differential equations, however, my paper did not attract
attention. It was over ten years after my paper that other
mathematicians began reading my “musical scores” and
playing  my  “music”  with  their  “instruments”.  By
developing  my  “original  musical  scores”  into  more
elaborate  “music”,  these  researchers  have  contributed
greatly to developing “Itô’s Formula”.27

Itô made a tremendous contribution to ensuring that probability
is a part of mathematics. I am particularly pleased to be able to honor
him in this text.
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