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Summary

Oil price data have a complicated multi-scale structure that may
vary over time. We use time-frequency analysis to identify the
main features of these variations and, in particular, the regime
shifts. The analysis is based on a wavelet-based decomposition
and a study of the associated scale spectrum. The joint estimation
of the local Hurst coefficient and volatility is the key to detecting
and identifying regime shifts and switches in the crude oil price
since the mid-1980s until today.
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1 Introduction

Market price fluctuations are commonly modeled by discrete time
random walks or continuous diffusion driven by standard Brown-
ian motion. The pioneering work of Mandelbrot [16, 17] showed
that such frameworks in most cases poorly describe the price fluc-
tuations. We can refer to [18] for a historical presentation. In
this text, we consider oil price data for the period from May 1987
to September 2017. The prices are recorded every trading day.
We seek to understand the time-frequency character of the data.
As we show below, the spectral characteristics of the data may
change over time and, in particular, signify regime shifts. We de-
scribe the scale spectrum of the oil price data, which is the main
tool we use to unravel the time-frequency, or time-scale, structures
of the data [1, 15]. This shows that the oil price data exhibit a
power-law character, in that their spectrum, as a function of the
frequency, obeys a power law, or, equivalently, that its scale spec-
trum obeys a power law as a function of the scale. We understand
temporal scales as corresponding to the periods associated with
the different frequencies. This is similar to the type of scaling one
sees, for instance, in turbulence data [20, 22]. What is somewhat
surprising with the oil price data is that this power law persists
over many scales, in fact, essentially over all the available scales.
The power-law parameters we discuss here are the Hurst exponent
and volatility. The Hurst parameter determines how price changes
over different time intervals are correlated, and it also character-
izes the scaling law of the energy in the price fluctuations over
different frequencies. The volatility determines the typical mag-
nitude of the relative price changes. The character of the power
law, however, varies over time, and, as mentioned, suggests regime
shifts. The variations in the power-law parameters reveal periods
in the data that cannot easily be seen directly.

The estimation method for the power-law parameters of oil
price data that we propose is based on wavelet decomposition. It
has already been proposed in the literature to estimate the local
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fractal dimension – or Hurst exponent – of different sets of data,
either synthetic time series [13, 21, 28] or experimental (physical
or financial) time series [4, 5, 6, 7, 24], and to use wavelet-based
decomposition to do so. It has long been identified that wavelet
analysis is an important addition to time-series methods with prac-
tical applications in economics and finance [25, 12]. Wavelets, for
example, have been used to study the evolution of the impact of
oil price changes on the macroeconomy [2], to investigate market
efficiency in futures markets for oil [30], and to estimate the Hurst
exponent of the crude oil price [10] (other methods have been
used to estimate the Hurst index [3, 9, 26, 14]). The wavelet-
based method for the joint estimation of the Hurst exponent and
volatility that we propose is different, however, and the analy-
sis of the two parameters reveals a more detailed structure. The
joint estimation method that we propose is original in that we use
continuous or non-decimated wavelet coefficients that are strongly
correlated. The joint analysis of the two parameters allows for
sharper detection and identification of regime switches.

In Section 2 we present the oil price data. In Section 3, we
plot the scale spectra of the data sets and show that price mod-
eling with a local power-law structure is indeed appropriate. We
describe the structure of the Hurst exponent and volatility es-
timated over successive overlapping windows in Section 4. We
underline that joint estimation of the two parameters is critical,
in particular, for obtaining a correct assessment of the volatility
variations. For comparison, we also study the estimated volatility
for the standard (local geometric Brownian motion) model in Sec-
tion 5, when the Hurst exponent H is assumed to be equal to 1/2,
corresponding to a Brownian model with independent increments
or returns.

2 Oil Price Data

In Figure 1 the red dashed line shows the raw daily oil price data
vector for the “West Texas Intermediate (WTI), Spot Price Free
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On Board (FOB) (New York)” (hereafter “West Texas”) in dollars
per barrel: P (t) is based on daily price records. The solid blue line
represents the “Europe Brent Spot Price FOB (London)” (here-
after “Brent”) in dollars per barrel. The daily data are available
from May 1997 to September 2017 [29].
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Figure 1: Full data vector for West Texas (red dashed
line) and Brent (solid blue line).

In Figure 2, we show the returns process for the Brent and
West Texas data sets defined by

Rn =
P (tn + δt)− P (tn)

P (tn)
, (1)

where P (t) is the “raw” pricing data and tn = nδt, with δt being
one day.

We observe here from the magnitude of the fluctuations seen in
Figure 2 that the volatility of the returns process is not constant,
but rather exhibits temporal variations. We will analyse the scale
contents of the data shown in Figures 1 and 2 in the next sections.
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Figure 2: Returns for West Texas (red dashed line) and
Brent (solid blue line).

3 The Scale Spectrum for Log Oil Price Data

We show in Figures 3–5 the scale spectra for the complete log-
transformed data (Figure 3) or for various subsegments of the log-
transformed data (Figures 4–5). The scales are expressed in units
of years. They show the energy in the different scales, which are
analysed below. We compute the scale spectrum with respect to
the “Haar” wavelet basis, making it relatively robust with respect
to noise. The first-level Haar coefficients correspond to the con-
secutive differences in the data. In our case, the data is the log
prices so that the Haar coefficients form an analogue of the re-
turns process. The Haar coefficients at higher levels correspond
to differences in local averages of increasing length. Thus, the
higher order differences may be thought of as returns over longer
intervals.

In Figures 3–5, we can see linear behavior in the log-log plot
corresponding to a power law, making it possible to discuss the
power-law parameters, which are the Hurst exponentH and volatil-
ity σ. The Hurst exponent characterizes the power-law decay of
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the spectrum. It also characterizes the existence of correlations
between the increments of the process. If H = 1/2, then the in-
crements are not correlated, which is the typical case for Brownian
motion or a similar process. If H > 1/2, the increments are pos-
itively correlated, which is the phenomenon called “persistence”.
If H < 1/2, then the increments are negatively correlated, which
is the phenomenon called “anti-persistence”. The smoothness of
the process increases with H, since consecutive increments become
more correlated as H increases.

In Figure 3, we show the “global power law” for West Texas
(red dashed line) and Brent (blue solid line), obtained from the
complete log-transformed data. The spectra conform with a global
power law, with estimated Hurst exponents H = .46 (Brent) and
H = .44 (West Texas), and estimated volatilities σ = .34 (Brent)
and σ = .32 (West Texas). As we will see below, this global power
law is consistent with a situation in which the Hurst exponent and
volatility vary over subsegments. It is striking to see that a non-
trivial power law (that is, a power law with H 6= 1/2) emerges
very clearly from the financial data, while it is difficult to exhibit
such a structure from physical data (such as the distribution of
energy among turbulence vortices), for which there are, on the
contrary, theoretical arguments to support a power law (for in-
stance, Kolmogorov’s theory of turbulence) [22]. In Figures 4 and
5, the spectra correspond to the first and last 16 years of the price
data (the periods 1987–2002 and 2002–2017). The strength of the
price fluctuations are slightly stronger in the latter half of the data
for the longer scales. The estimated volatilities are σ = .28 for the
first 16 years and σ = .38 for the last 16 years for the West Texas
data (red dashed lines). The estimated volatilities are σ = .32 for
the first 16 years and σ = .38 for the last 16 years for the Brent
data (blue solid lines). The qualitative behavior of the spectrum
is, however, similar for the two halves of the data. The associ-
ated Hurst exponent estimates are H = .41 for the first 16 years
and H = .47 for the last 16 years for the West Texas data (red
dashed lines). The solid blue lines are the corresponding spectra
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Figure 3: The “global power law” for West Texas data
(red dashed line) and Brent data (blue solid line). When
the scale energy is computed from the complete log-
transformed data, we observe approximately a linear
scale spectrum. The dotted lines represent a fitted spec-
trum. Here and below the spectrum is computed with
Haar wavelets and is “continuous” in space and scale.
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for the Brent data set with the associated Hurst exponent esti-
mates being H = .43 and H = .49, respectively. The dotted lines
in the figure are the corresponding model spectra that represent
a “perfect” power law with the estimated exponents. We can ob-
serve that the spectra retain an approximate power-law behavior
on very long scales. Moreover, the power law is very similar in the
two halves of the data. This happens when we average the scale
energies over a relatively long time period of 16 years. We will see
below that if we consider the data over shorter subsegments, the
overall energy of the process changes over time, which manifests
itself in a vertical shift in the spectra, corresponding to changes in
the local volatility. We will also see that this change happens in a
coordinated fashion for the West Texas and Brent data sets.
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Figure 4: Scale spectra for the period 1987–2002.

4 Price Modeling with a Local Power-Law Spec-
tral Structure

As indicated by the above data analysis, we find that the log of the
oil price data exhibits a power-law spectral structure, but that the
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Figure 5: Scale spectra for the period 2002–2017.

parameters of the power law vary over time. We therefore model
the log prices as:

log(P (t)/P (0)) = BH,σ(t) , (2)

where BH,σ is a random process with local power-law behavior,
with σ being the volatility and H the Hurst exponent. The classic
model process for BH,σ is fractional Brownian motion (with con-
stant H and σ) [19, 11]. The parameters σ = σt, H = Ht will be
modeled themselves as varying with respect to time, albeit on a
scale somewhat slower than the price process itself. This type of
modeling is referred to as multi-fractal or multi-fractional stochas-
tic modeling [8, 23].

In order to identify the local power-law parameters, we de-
compose the data into overlapping segments of length 28 points
(segments of roughly one year) in the next section and estimate
a homogeneous power law within each segment. The estimated
power-law parameters are then attributed to the date correspond-
ing to the center of the segment.
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4.1 Local Hurst Exponents

In Figure 6, we show the estimated Hurst exponents. Recall that
the Hurst exponent determines how the consecutive increments of
the process are correlated with values larger than 1/2, correspond-
ing to positive correlation; values less than 1/2, corresponding to
negative correlation; and 1/2, corresponding to uncorrelated re-
turns and absence of arbitrage. In particular, if H > 1/2, then
the market is not weakly efficient since it possesses long memory
[27]. We use here again the log of the raw pricing data as shown

1990 1995 2000 2005 2010 2015 2020

Year

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H

Hurst Exponent

Brent
West Texas

Figure 6: Estimated Hurst exponents Ht for the West
Texas data (red dashed line) and the Brent data (solid
blue line).

in Figure 1, when we compute the scale spectrum with the West
Texas data set (red dashed line) and the Brent data set (solid blue
line). We use segments of length that represent approximately one
year (28 points). Moreover, we move the center point of the seg-
ment by one day to get the time-series, Hurst-exponent estimates
shown in the figure. This is now a time series with an observation
for every day corresponding to the local Hurst exponent.
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Note that in Figure 6, the four periods with high Hurst ex-
ponent estimates are roughly 1990–1991, 1999–2000, 2008–2009,
and 2014–2015. These are important phenomena exhibited by this
time-frequency analysis. We comment more on this below, given
that the four periods are even more visible when looking at the
volatilities. Some of these periods are neither apparent in the raw
price data directly, nor in the returns data (Figure 1-2), nor in the
standard volatilities estimated with standard quadratic variations
(which means assuming that the Hurst exponent is 1/2), as we
will see below. We also remark that the Hurst exponent is partly
lower in the West Texas data set than in the Brent data set, corre-
sponding to the price fluctuations being somewhat rougher in the
West Texas data than in the Brent data.

4.2 Local Volatilities

When we analyse the log-transformed oil price data, we simul-
taneously estimate two parameters: the Hurst exponent Ht and
the local volatility parameter σt in Equation (2). Using the same
segmentation as in Figure 6 above, we show the corresponding
volatility estimate σt in Figure 7. The volatility is given relative
to the annual time scale. Note again that the power law should
be interpreted as a local power law with a volatility that depends
on time. The West Texas data set corresponds to the red dashed
line and the Brent data set to the solid blue line.

As noted above, the figure clearly shows that there are four
periods with relatively high volatility: roughly 1990–1991, 1999–
2000, 2008–2009, and 2014–2015. These four periods can be re-
lated to four events, marked with crosses in Figures 6 and 7.
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• The first cross, in August 1990, corresponds to Iraq’s invasion
of Kuwait, and it initiates a period with high volatility and a high
Hurst exponent.

• The second cross, in January 2000, corresponds to the peak of
a period with relatively high volatility and a high Hurst exponent.
This may be explained by the approach of the year 2000 and fear
of the Y2K bug, which never occurred.

• The third cross, in September 2008, corresponds to the
bankruptcy of Lehman Brothers, initiating a period with very high
volatility and a high Hurst exponent. We can also note that the
all-time high for the oil price was reached during trading on 11
July 2008.

• The fourth cross, in July 2014, corresponds to the massive
liquidation of Brent- and WTI-linked derivatives by fund managers
and the beginning of the price fall, initiating a period with a very
high Hurst exponent and high volatility.

Note that the second period, around 2000, cannot be detected
from the direct inspection of the raw price data or the returns
data. Furthermore, the fourth (and last) special period appears
to be unique as its Hurst exponent reaches .7, a manifestation of
strong, positive correlations between the increments. The latter
has never been reported in any financial data as far as we know.
The results are very much the same for the Brent and West Texas
data. In fact, the scale-based correlation structure between the
two data sets plotted in Figure 8 reveals that the data sets are
indeed strongly correlated at all scales.

Note that the qualitative properties with respect to Hurst and
volatility estimates, as well as the special periods, are stable with
respect to segmentation, in that they can also be identified as dou-
bling or halving the segment lengths. Halving the segment length
makes the estimates become slightly more noisy, while doubling
it causes some of the features to become slightly more blurred, in
particular in the case of the 2014–2015 period.
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Figure 7: Local volatility estimates relative to the annual
time scale σt for the West Texas data (red dashed line)
and the Brent data (solid blue line).
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Figure 8: Scale-based correlation between the Brent
and West Texas data during the period May 1987–June
2009 (blue crosses) and July 2009–September 2017 (red
crosses).
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4.3 Spectral Misfits

Next, we calculate a scale spectrum misfit. This is the sum of the
squared difference between the empirical scale spectra and the es-
timated scale spectra, with the summation going over the scales.
The terms in the sum are normalized by the variance of the cor-
responding log-spectral point. The result is plotted in Figure 9.
We observe that the spectral misfit is relatively low and statisti-
cally homogeneous with respect to time. This means that the four
special periods that were detected and discussed above are well-
described by the multifractional model with the Hurst parameters
Ht and σt.
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Figure 9: Spectral misfits for the West Texas data (red
dashed line) and the Brent data (solid blue line).

5 Modeling with Uncorrelated Returns

In Figure 10, we show the estimated volatility when we condition
the Hurst exponent H to be 1/2, corresponding to a Brownian
model with independent increments, or returns, which is the stan-
dard model. We can observe that the 1999–2000 period does not
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appear clearly in this figure, while it does in Figure 8. The 2014–
2015 period appears much less dramatic, while the multi-fractal
analysis reveals its unique features characterized by a very large
Hurst exponent. Note also that beyond the special periods, the
standard volatility experiences somewhat strong variations, while
it is rather flat (around .2) in the multi-fractal analysis.
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Figure 10: Estimated volatilities for the West Texas data
(red dashed line) and the Brent data (solid blue line)
when we condition on H = 1/2 to enforce uncorrelated
returns.

In Figure 11, we show the spectral misfit that follows when
we fix H = 1/2. Comparing with Figure 9, we see that this en-
forcement means that we do a relatively poor job of capturing im-
portant structural features in the data, as the spectral misfits are
relatively high; they can also vary significantly during the special
periods detected and discussed above. This is even clearer where
we show the variograms for the spectral misfits in Figure 12. These
properties are stable with respect to segmentation. The magni-
tude of the spectral misfits obtained with the multi-fractal model
(with a time-varying Hurst exponent) is significantly smaller, and

14



we can see that the spectral misfit appears to be a white noise
process supporting this modeling.
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Figure 11: Spectral misfits for the West Texas data (red
dashed line) and the Brent data (solid blue line) when we
condition on H = 1/2 to enforce uncorrelated returns.
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Figure 12: Variograms for the spectral misfits. The two
top lines correspond to the spectral misfits obtained from
the log-transformed data when enforcing uncorrelated re-
turns. The two bottom lines correspond to the spectral
misfits obtained from the log-transformed data and pro-
cessed with the multi-fractal model.

6 Conclusions and Perspectives

We have analysed oil price data with a view toward identifying
regime switches. We have found that a scale spectral analysis
of the log prices is an efficient approach for identifying regime
shifts. The time-frequency analysis involves computing the scale
spectrum and fitting it to a power law, which for the log-scale
spectrum corresponds to a linear model (Figures 3–5). The differ-
ent scale spectral points can be associated with energy of returns
at different scales. The special regimes can be associated with
enhancement of both volatility and persistence (Hurst exponent)
(Figures 6–7).

A striking result is that the power-law behavior for the log
prices can be seen over all scales available in the data (Figures 3–
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5). It is very interesting, however, that if one looks at subsegments
of the data, one observes a “local” power law with a local Hurst ex-
ponent and local volatility that varies over time and, in particular,
that announces the emergence of the special regimes (Figures 6–7).
They fluctuate, however, in a coordinated fashion, and in a way
so as to generate a power law also on the macroscale. We refer to
the time series defined by the estimates of the Hurst exponent and
volatility in the subsegments as the inferred volatility and Hurst
exponent processes.

It is important to note that to generate the inferred processes,
the lengths of the subsegments are fixed, and we move the window
one day at a time. The choice of the length of the subwindows
is guided by the effective signal-to-noise ratio: we need to choose
windows (a) large enough to have enough data to be able to es-
timate the local power-law parameters with sufficient precision,
and (b) small enough to resolve the local power-law parameters
without too much bias.

From the point of view of price process modeling, it will be
interesting to further our research by trying to understand how a
local power law can be associated with a global power law on the
macroscale and the relation between local and global parameters.
Such an analysis will likely involve a multi-scale asymptotic anal-
ysis. It is also central to understanding and better quantifying the
arbitrage involved with the inferred parameters of the type ob-
served here. Will a small amount of friction, in terms of a typical
transaction cost, for example, remove the possibility of arbitrage,
or is intrinsic arbitrage a central ingredient of special regimes as
observed here?
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